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Let X be a linear space, and H a Hilbert space. Let. j' denote a set of n distinct
points in X designated by x I' ... , x" (these points are called nodes). It is desired to
interpolate arbitrary data on . ,. by a function in the linear span of the n functions,

.u-' I F,(IIT.(x-Vk)II'), k = I, ... , n,

where Yk are n distinct points in X (called knots), T. are linear maps from X to H,
and F,. are some suitable univariate functions. In this paper, we discuss the
solvability of this interpolation scheme. For the case in which the nodes and knots
coincide, we give a convenient condition which is equivalent to the nonsingularity
of the interpolation matrices. We obtain some sufficient conditions for the case in
which the nodes and knots do not necessarily coincide. (1993 AcademIC Press. Inc.

1. INTRODUCTION

Let X be a linear space, and H a Hilbert space. Let L denote the set of
all linear maps from X to H. Given g E C( IR) and TEL, we can construct
a simple-structured function C/J on X by composing g with II Til, where 11·11
is the norm on H; i.e., C/J(x) = g( II T(x)II), x E X. If </J E X*, the conjugate
space of X, then If' = g r/J is also a function on X, and we call If' a ridge
function on X. For example, the mapping x f--+ g( (x, v», where x, v E IR d

with v being fixed, and (x, v> being the Euclidean dot product of x and
v, is by definition a ridge function on IR d

. It is constant on every line
{a + tu : t E IR }, where a, U E IR d and u.l v. If X is a Banach space, then
it is proved by Cheney and Sun [SC] that the set of ridge functions
is fundamental in the space C(X) under the topology of compact
convergence.

Let .j' denote a set of n distinct points in X designated by x I' ... , x".
These points are called nodes. Let some arbitrary data (xi' I,), I, E IR, be
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given on viVo We wish to interpolate the data by a function in the linear
space generated by the n functions

Xf-+ I FAil Tv(x- YdI1 2
),

v=l

k= 1, ..., n, (1 )

where y" ..., Yn are n distinct points in X (called knots), T), ... , TmE L, and
F1, ... , Fm are some suitable functions in C( IR) that we will describe later. By
varying the number m, the functions F), ... , Fm and the linear maps
T1 , ... , Tm , we obtain a rich family of interpolating functions which are of
simple structure. For instance, included in (1) are sums of radial functions,
ridge functions, or both.

When the interpolation conditions are imposed on an element of this
linear space, the result is a system of n linear equations in the unknown
coefficients C 1, ... , Cn'

/I m

L C j L Fv(11 T,.(xj -YdI1 2
) =1;,

j=) ,.= I

k= 1, ...,n.

The coefficient matrix A of the linear system has entries

m

A jk = L F,(IIT,.(xj - hIl 2
),

v= 1

(2)

and is termed the interpolation matrix. We also need to impose some
conditions on the functions F" ..., Fm • Let Cf}vIt denote the set of functions
satisfying the following three conditions:

(Cl) F: [O,x) -> [0, ex)),

(C2) F is completely monotone on (0, CfJ) and continuous at 0,

(C3) F is not a constant.

Let f?ZJI denote the set of functions satisfying the following four condi
tions:

(01) F: [0, x)-> [0, x),

(02) F is C" on (0, CX)) and continuous at 0,

(03) F' is not a constant,

(04) (-1)' F('+ )1(1)?0 for v =0,1,2, ... , and t >0.

We recall that a function f: [0, 00) -> IR is said to be completely
monotone on (0, x) if (-1)' I(VI(x)? 0, v = 0, 1,2, ..., on (0, CX)). Hence,
condition (D4) is equivalent to F' being completely monotone on (0, CX) ).
In [D, OLC, M], an extra condition was imposed on the functions in
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gulf, namely, F(t) > 0 when t > O. It was pointed out to the author by the
referee that this condition is not essential in the argument.

Throughout this paper, if not declared otherwise, the functions F, will be
assumed to be elements of rt.lt orQ.lt.

So far only the special case of this interpolation scheme where the nodes
and knots coincide (i.e., x j = Yj for all i), has been studied in the literature.
Micchelli [M] proved that if m = 1 and if T1 is the identity map on ~d,

then the interpolation matrix of (2) is nonsingular. Oyn, Light, and Cheney
[OLC] proved that if m = d, and T1 , ... , 7;, are projections from ~d to the
coordinate axes, then the interpolation matrix of (2) is nonsingular if and
only if the n functions in (1) are linearly independent. It was showed by
Oyn and Micchelli [OM] that the same is true for the general functions
in (1) and for a wider class of interpolation problems based on condi
tionally positive definite functions {F,} 7'~ I of arbitrary order.

Oyn, Light, and Cheney took a geometric approach. They used the con
cept of a path in ~2. A path in [R2 is an ordered set of points PI' P2 , ... , P,
in [R2 such that the line segments PI P2 , P2 PJ , ... , are all of positive length
and are alternatively horizontal and vertical. The path is closed if PI = PI'
and if I is odd. In [OLC], it was shown that the interpolation matrix A,
A ik = FI ( II T,(.x/- xd11 2

) + F2(11 T2(.'ii- x k I1
2

), where XI' ... , XII E [R2 and T
"T2 are the two coordinate projections, is singular if and only if the set of

nodes contains a closed path. The closed path introduced in [OLC] essen
tial1y works in a much more general setting in the case m = 2 [OM l But
when m ~ 3, it seems that there is no analogy of the closed path property;
see [LCl In discussing the singularities of II-norm matrices, Light [L]
introduced multidimensional closed path, using the structure of a tree. Light
showed that if the set of nodes contains a multidimensional closed path,
then the corresponding II-norm matrix is singular. On the other hand,
there exist some node sets which have a singular matrix without containing
a multidimensional closed path. Such an example will be given in Section 2.

Inspired by the work of Oyn and Micchelli [OM], we find that it is con
venient to use a semi-norm to study the solvability of the interpolation
problem. This semi-norm is closely related to the pattern of node distribu
tion and the linear maps TI, ..., 7;". We introduce and exploit this semi
norm in Section 2. Section 3 of this paper is devoted to the more general
case where the nodes and knots do not necessarily coincide. We prove
some sufficient conditions. However, our results there are confined to ridge
functions.

2. THE SEMI-NoRM

As in Section 1, a set of nodes (in Xl

4/' ._ {v x: )
L./l' .- ~'\.1' ..• , ~ Jl f
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and a collection of linear maps (from X to H)

JT '- {T T \U.- l' ... , mj

255

are given. For each v, V= 1, ..., In, let A,.:= {y: T"xj=y for some j}. In
other words, A,. = 1',( .. f'). We define the semi-norm 1·1,.f on IR"
associated with A' and.r in the following way: if c:= (c), ... , C,,)E IR", then

[
m ( )2J12

Icl" f:= '~I '~A' I {c,: T,x,=y} (3)

It is easy to check that 1,1, ..7 is indeed a semi-norm on [R". In this paper,
our principal concern is to understand the precise conditions under which
'·1 I . T is a genuine norm and not just a semi-norm. Thus any other equiv
alent definition is also valid. For example, we can define the semi-norm as

l.:(p<x.

We settle upon Eq. (3) as our definition for convenience.
We offer a few examples before we exploit properties of the semi-norm.

EXAMPLE 1. Let m = 1, and let T, be a linear map from [R" to [R" such
that T(x/)¥T(Xk) if J¥k. Then Icll,Y=(L7~1 cn l2

, i.e., I·I,,Y is the
Euclidean norm on jR".

EXAMPLE 2. Let x I' X 2' X J , X 4 be the four vertices of a rectangle in the
plane [R 2 (see Fig. 1(a)), and let T1, T2 be the two coordinate projections.
Then (3) defines a semi-norm on [R4 in the following way: for
c:=(C I ,C2,C3,C4)EIR4,

If we enlarge or shrink the rectangle, we always obtain the same semi-
norm in this process. Actually, 1,1" ..'7 is a certain geometric invariant

o

FIGURE I

o
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which describes some topological relationship between the node set vV and
"Y. We also note that the semi-norm in this example is not a norm, since
for the nonzero vector ('=(1,-1,1,-1), we have Ieli"Y=O,

EXAMPLE 3. Again in 1R 2, we select six points as illustrated in Fig. 1(b).
T1 , T2 are projections to the coordinate axes. The result is the following
semi-norm in 1R 6

,

Icl I ..Y = [(CI + C 2 )2 + (c} + C 4 )2 + (cs+ C6 )2 + d + (C2 + C})2

+ (C4 + ('S)2 + C~]li2.

This is a norm since leI. j ,J = 0 is equivalent to the homogeneous linear
system

c,+C 2 =0

('3 + C4 = 0

Cs+c6=0

C 1 =0

c2 +c}=0

c4+Cs=0

C6 = 0

which has only the trivial solution.

EXAMPLE 4. In 1R 3, we select five vertices of the unit cube as illustrated
in Fig. 2. Let T" T2 , T3 be the three coordinate projections. Then we have
a semi-norm on IRs defined by

lei j ,J = [(c 1 + ('} + C4)2 + (c 2 + ('S)2 + (c, + C2 + C4)2

+ (C3 + CS)2 + (c} + C2 + C))2 + (c 4 + csf] 1
i
2.

FIGURE 2
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This is not a norm, as the nonzero vector (2, -I, -I, -I, I) has a semi
norm O.

These five points also serve as the example we mentioned in Section 1.
Namely, they do not form a multidimensional closed path under the defini
tion of Light [L], but their II norm distance matrix is singular.

To verify that 1·1.1..r is a norm, we write down a homogeneous linear
system whose coefficient matrix is sparse and all the nonzero entries of the
matrix are 1. The semi-norm '·II.T is a norm if and only if the linear
system has only the trivial solution.

If /./ I.,r is a norm on ~", then it is equivalent to the Euclidean norm
on ~", as any two norms on a finite-dimensional Banach space are equiv
alent to each other. Let Ii. f be the identity operator from the Banach
space ([R", 1-1.,1) to the Banach space (W, 11·11). Let the operator norm of
I,.T be 1/),\ J' Then, the number i' l J has the following properties:

(i) 1e1\,.T~AI./7llell for all c in [R";

(ii) If A is a positive number such that lel\.,r~i,llcll, then
)'1.:7 ~)..

We call ), \ . I the norm constant of 1·1 1.:7 related to 11·11. or simply the
norm constant of 1·1 I. /7 .

PROPOSITION 1. Let.1' and Y be given, # A' = n, and let Y 1 C .'T. Then
for any c E [R", we have 1e1. 1 .] ~ lei. I . fl' Consequently, if I·' I . I, is a norm,
so is /·1. I .:7'

Proof From the definition of 1·1 '.:7 in Eq. (3), we have

So the result follows. I

PROPOSITION 2. Let Y := {T" ..., Tm } with ker( T,.) of. {O} for all v. Then
there exists a node set .r := {x I' , .. , X 2m}, # .t' = 2m

, such that 1·1. I ..-7 is not
a norm on [R2

m
•

Proof The construction of A' uses induction on m. When m = I, since
ker( T, ) of. {O}, we can select two different points x I' X 2 in X, so that
T(x l )=T(x2 ). Then for the nonzero vector (1,-I)E[R2, we have
1(1,-I)I: x ,.X2i.{TtI=O. Thus '·I{X[.Xl}.{T!l is not a norm on [R2.

Suppose that the results is true for m - 1. Then for g; := {T" ... , T,,, ,},
there exist a node set vi;:={x l , ... ,X2m I}, #.V;=2 m

- ' , and a nonzero
vector u := (u I' ... , U2m - ,) such that Iul ,l ..-7, = O. i.e., for each v and every
YEA" .L {u i : T,.x; = y} = O. Since ker( T,,,) of. {O}, we can select z of. 0 such
that Tm(z) = 0 and such that Xi of. X k - z for all j, k = I, ..., 2m

I. This is
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possible because the set {XI - X k : j, k = I, ..., 2m I} IS finite. Let
,k-:={.Vl"",Y2m}:={Xl>oo.,X2m I, x]-z, ,X2m I-Z}. Then #,l·=2m

.

Let v:=(v 1 , ... ,V2m):=(U], ... ,U2m.-I, -u 1 , ,-U2m-I). We have IvI21"r=
IVI2'J,+lv!21.:Tmi' It is clear that IvI21.:.rmi=O. It order to see that
Itf, .11 = 0, we write down, for each v < m and every YEA"

" f v, : T, .", =."} =" J U . T x - " l +" (- U • T (x -,,) - )' l1... l " , 1... ( j' ". 1- .> J 1... l i" • j ~ - J

PROPOSITION 3. Given any node set ,V:={Xl""'Xn }, #.V=n, and
m ~ I, we can find a set of m elements Y := {l/I [, ..., l/Im} c X*, such that
',1,1.:7 is a norm on 1Ri".

Proof Select IjJ 1 E X* so that ljJ(x) #- ljJ(xd if j #- k. This is possible
because each set {1jJ: ljJ(xi - xd = 0) (j #- k) is a hyperplane in X*, and
their union is not all of X*. Thus [,1,\, :>I>d is a norm. Choose 1jJ2, oo., IjJm
arbitrarily and let Y:= {1jJ[, ..., IjJm). By Proposition I, 1·1 I J is also a
norm. I

If m = 2, the semi-norm I·j I . I serves our purposes just as well as the
"closed path" does. The following definition of closed path is given by Oyn
and Micchelli [OM] which extends the one in [OLC].

DEFINITION 4. Let ,Of := {T[, T2 }, where T 1 , T 2 are two linear maps
from X to H such that .Of is linearly independent. A closed path in X with
respect to ,Of is a finite ordered set consisting of I, I even, distinct points in
X, [YI' oo., y,], satisfying the following equalities

j = 1, oo" 1/2,

where y,+ 1= y].

DEFINITION 5, Let ,i/O and Y be given. If for every pair x, and X k in ,i',
,Of,x! = T"xk for all v implies Xi = X b then we say that ,.y- is in general
position with respect to Y,

If [Yl, 'oo, y,] is a closed path and in general position with respect to
Y := {T1 , T2 ), then we have

j= 1, .oo, 1/2,

j= 1, oo., 1/2.
(4)

This fact is crucial in the proof of Lemma 6 below.
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LEMMA 6. Let ~V be in general position "...ith respect to ff := {T1 , T2 }.

Let vii be a nonvoid subset of A' such that for any y E X and v = I, 2,
# (,JIll {x : 1'..x = y} ) # I. Then ,II contains a closed path with respect to
.Y= {T1 , T2 }.

Lemma 6 is a generalization of Lemma 3.2 in [DLC]. Essentially, the
proof there works for Lemma 6 (use the remark following Definition 5).
So we refer to [DLC] for the proof. I

THEOREM 7. Let 0 t' be in general position with respect to ff =; { T" T2 }.

In order that 1·1.1 .'7 be a norm it is necessary and sufficient that .j' contain
no closed path with respect to .Y.

Proof Assume that ,I' contains a closed path. Remember the nodes if
necessary so that {XI' ..., x",} is a closed path, where m ~ n, m even. We
show that for the nonzero vector

c:= (I, -I, ... , I, -1,0, ...,0),
~

m

lei '.,F =0. For any YEA l , let I, = # {xj ; T1xj =Y, J= I, ... , m}. Since ,j'

is in general position with respect to ff =: {T1 , T2 }, by Eq. (4), we see that
1\ is even, and we have

I {c j : T1 x
J

= y} = (I - I) + .. , + (1 - I) = O.-- "'./~

I,

The same argument can be applied to yEA 2' Therefore

[
2 ( )2Jl/2lei \ ..? = I I I {C j : Tv x, = y} = O.

\"= I yE A,

The necessity of the theorem is proved.
To prove the sufficiency, assume that A' does not contain a closed path.

We have to show that the equation Icl. \ ..r = 0 implies that c, = 0 for all ./.
We will prove this by induction on #.V. When #.V = I, the result is
automatically true. Assuming that the Theorem is true when # A' = n, we
show that it is also true when # oV = n + I. Since ,j' does not contain a
closed path, by Lemma 6, there exist an xjo E oj' and a Tv(} E ff such that
# (.. V 11 ({ x: T"ox = T"oxjo }) = 1. So Tvox;o # T"o-"(j for all J # Ja. Then, by
the definition of the semi-norm lei. 1 ..r' we know that (lei \ ..7)2 contains
the term c~. Hence Icli..r=O implies cjo=O. Therefore, Icl,.07=
Ic'I.1 [x/ol ..? =0, where

c' :== (c 1 , ••• , c/o I' C/o + 1 , ••• , en + I ).
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Since # {A'\ {Xjo} }= n, the induction hypothesis implies that c' = O. Hence
c=O. I

Let [RH and [Rx denote the sets of all real-valued functions on H and X,
respectively, Let R(:r):=span{foTv:fE[RH, v=l, ...,m}. The next
theorem is about the relationship between the semi-norm i·i".'7 and
R(:r).

THEOREM 8. The following three statements are equivalent:

(i) i·II,I is not a norm;

(ii) There is a nontrivial functional ¢J E ([Rx)* supported on vi' lvhich
annihilates R(:r);

(iii) There exist n constants:x I' ... ,:Xn , not all CI.} are zero, such that

"L Cl.jG(x-x)=O
j~ I

for all G E R(:r) and all x E [Rd.

Proof Let x E X, and let x* be the point evaluation functional
associated with the point x; i.e., for any function g whose domain includes
x, x*(g) = g(x). Let l/>(vI') denote the set of all the linear functional
¢J E ([RX)* with supp(¢J) c .j'. Then it is obvious that every element of
l/>(.V) can be represented as I.~~ ICl.ry:t, Cl. 1, ... ,Cl.n E IR, and vice-versa.

For the proof that Part (ii) implies Part (i), suppose Part (ii) is true, and
let ¢J be a nontrivial functional in ([Rx)*, ¢J = I.7~ I cjxt, that annihilates
R(:r). For each v, we have

0= ¢JU' Tv) = L c;I( T"x,)
j~ 1

Since (5) is true for any function in [RH, we must have

(5)

(y E A v, v = 1, ..., m). (6)

Equation (6) is equivalent to Icl,. ,cr = O. Since ¢J is nontrivial, the vector c
is not zero. This shows that 1,1, 1 • .'7 is not a norm. Therefore part (i) is true.

In order to prove that part (i) implies part (ii), suppose that part (i) is
true. Then there exists a nonzero vector c:= (cl, ..., cn ) so that lel. l J =0.
From Eqs. (5) and (6), we see that the nontrivial functional ¢J := I.7= I c,xt
annihilates R(:r).
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The equivalence between part (ii) and part (iii) follows from the observa
tion that if G(·) E R(.'1) then G(x - .) E R(.'1) for any fixed x E X. I

We point out here that the result of Theorem 8 is still true if we replace
R(.'1) by a certain subspace of it. Let $i(H) be a subspace of [RH which
separates the points of H, i.e., for any pair x I' X 2 E H, with x 1 =I x 2' there
exists a function f E $i (H) such that f(x d =I f(x 2)' Let R(.'1) be a subspace
of R(Y) defined by

R(.'1) :=span{fo Tv :fE$i(H), V= I, ..., m}.

Then, Theorem 8 is true for R(.'!/) with the same proof.

COROLLARY 9. lfl·li,.T is nol a norm, IhenforanyGER(.'1), the inter
polation matrix (G(xj - xd) is singular.

From the examples and theorems discussed above, we see that in some
special cases 1·1.1 ..,r being a norm is equivalent the nonsingularity of the
interpolation matrix of (2) when XI = Yj' j = I, ... , n. The following theorem
shows that this is true in general.

THEOREM 10. Let the.functions Fv ' V= I, ..., m, be either aI/from Cfj,{/ or
gJI. Then the interpolation matrix A,

'"
A jk = L Fv ( II T,,(xj - xdI1 2

),

\'= J

is nonsingular if and only if the semi-norm 1·1. I •.,r is a norm.

Theorem 10 follows from [OM, Lemma 2.1 and Proposition 3.1].
A direct proof of Theorem 10 is also possible; see [S2].

Now we have the following three equivalent conditions:

(i) The interpolation matrix of (2) when xj=J';. j=I, ...,n, is
nonsingular;

(ii) The n functions XI-+L7'=l Fv(IITv(x-x)11 2
), j=I, ...,n, are

linearly independent;

(iii) The semi-norm 1·I.iJ is a norm.

The equivalence of (i) and (ii) was proved in special cases by Oyn, Light,
and Cheney [OLC] and in general by Dyn and Micchelli [DM]. Practi
cally, condition (iii) is very convenient. As we mentioned before, 1·1, J

being a norm is equivalent to a certain linear system having only the trivial
solution. The coefficient matrix of the system is sparse and all the nonzero
entries are I. Even if n is a reasonably big number, the problem poses no
challenge to the modern computers.



262 XINGPING SUN

If the interpolation matrix A,

m

A;k = I F,.( II Tv(x, - xdf),
\'= I

is nonsingular, in which case 1·1. I ..Y is a norm, then using the methods
developed by Ball [B] and Narcowich and Ward [NW], it is possible
to estimate the norm of A -I (as an operator from I~ to I~) by the norm
constant J.. I J of 1·1. I J' We will discuss the problem elsewhere.

At the end of this section, we prove some useful theorems using proper
ties of the semi-norm and Theorem 10.

THEOREM 11. Let vi' and :Y be given, and let .~ c:Y. Let the functions
F1 , ... , Fm be either all from 'fIJI or all from f!2.({. Then, if the interpolation
matrix B,

is nonsingular, so is the matrix A

m

A;k= I F,.(IITv(x,-xdI1 2
).

\'= I

Theorem 11 shows that the interpolation scheme has the advantage that
appropriate terms can be added without disturbing the solvability.

Proof If the matrix B is nonsingular, then the semi-norm 1.1. 1 . I, is a
norm by Theorem 10. By Proposition 1, the semi-norm 1-II J is also a
norm. By Theorem 10 again, the matrix A is nonsingular. I

THEOREM 12. Let m ~ 1, and F, , ..., F,,, be either all from rt,'.11 or all from
f!2.({. Then for any set .Y' := {x 1, ... , x,,} of distinct nodes, there exists a set
ofm elements 1/11' ..., I/ImEX*, such that the interpolation matrix A,

A;k= I Fv((t/!,.(x;-xd)2),
\,=1

is nonsingular.

Proof Apply Proposition 3 and Theorem 10. I
We also have the following negative result:

THEOREM 13. Let:Y:= {T\, ..., T",} with ker( T,,) #- {O} for all v. Then



MULnVARIATE INTERPOLAnON 263

there exists a node set .i' := {x I' ... , X2"'}' # A' = 2m
, such that the matrix

A,

'"
A jk = L h,,(T,,(xj-xd),

\'=1

is singular, where hi' ..., h", are arbitrarily functions in (RH.

Proof For the given Y, by Proposition 2, there exists a node set
.V:={x1 , •.. ,X2",}, #uV=2m, such that the semi-norm /'/1.7 is not a
norm. Since the function I::~'~ 1 h v 0 1'.. belongs to R(Y), the matrix A is
singular by Corollary 9. I

3. THE CASE IN WHICH THE NODES AND KNOTS
Do NOT NECESSARILY COINCIDE

DEFINITION 14. Let A be an n x n matrix. Let A( 1'.12,
H

, ip ) denote the
JI • ./2 . .... .Ip

P XP minor of A obtained by retaining only the rows labelled iI' i2 , ... , ip

and the columns labelled 11,12' ...,1p . Here we assume 1~ P ~ nand

(8 )

(9)

we say that A is totally positive. If the strict inequality holds in (9), we say
that A is strictly totally positive. This definition is in harmony with the one
in [K].

It follows from a well-known theorem that a symmetric totally positive
matrix is nonnegative definite, and that a symmetric strictly totally positive
matrix is positive definite. Here we adhere to traditional terminology and
call a matrix A positive definite if x TAx> 0 when x # O. The term "non
negative definite" is used if x TAx ~ 0 for all x.

LEMMA 15. Let a 1 <a2< ... <all and hI <h2 < ... <hll . Put A jk =

(a j - bd2. If A is symmetric, then c T Ac ~ 0 for every vector c satisfying

I:7=1 cj=O.
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Proof The following Laplace transform formula is well-known. See,
for example, [AS, p. 1022]

r(fJ) 05 Ii = IX e Iftil I dt
o

(fJ > 0, s> 0).

Let 0 < 11. < 1 and fJ = I - 11.. The preceding equation leads to

r( I - 11.) r 05 7
I ds =r f X e - sf t·· 7 dt ds

o 0 0
(0 <IJ. < 1).

Tonelli's Theorem [R, p. 270] justifies the interchange of integerations on
the right. We obtain

(O<a<l,u~O).

Since L7~ I c j = 0,

/I

Q7 = -11. lim IX L L
r( I - 11.) F.) 0 I: i ~ I k ~ t

Since the kernel e (1- .1)2 is strictly totall positive [K, p. 88] and since the
matrix A is symmetric, the matrix defined by

is totally positive and positive definite for all t > O. Hence Q 7 ~ O. Letting
at 1, we obtain cTAc~O. I

LEMMA 16. The following results about functions in etc"f or g.!f are true
on the interval (0, 00):

(i) If fEet.lt, then f(2/) is strictly decreasing, while f(21 + 1) is strictly
increasing, 1=0, 1, 2, ....

(ii) If fEg.!f, then f(2/) is strictly increasing, while p2/+1l is strictly

decreasing, 1=0, 1, 2, .... In particular, F( t) > °when t > O.

Proof Let FE et.!f, and 1=0. By the Bernstein-Widder Theorem [W],
there exists a finite positive measure f3(s) on [0, (0), which is not concen
trated at 0, such that f(t)=/(O)+J;;Ce- Sf df3(s). If O~tl<t2' then
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e - II' - e - 12' > 0 for all s > O. Hence f(t d > f( t2)' The strict inequality holds
because the measure f3(s) is not concentrated at O. The other cases can be
handled similarly. I

LEMMA 17. Let a l <a2< ... <a" and b l <b2< ... <btl' and let
f E Cfjj{. Put A jk = f((a j - bd2). If A is symmetric, then it is positive definite.

Proof By the Bernstein-Widder Theorem [W], we can express f(x) as
follows.

f(t) =r e-'I df3(s)
o

(t ~ 0).

where f3(s) is a positive Borel measure on [0, 00) whose mass is not
concentrated at O.

We have Ajk=J~ exp[-s(aj-bd2]df3(s). As in Lemma 15, the matrix
£(s) given by

is strictly totally positive for s > O. Since f is strictly decreasing
(Lemma 16), the matrix having elements (aj-bkf is symmetric. Thus £(s)
is symmetric, and therefore positive definite. It follows that A is positive
definite, for if c E W\ {O }, then

cT Ac =rf f CjCk£jk(S) df3(s) > O.
o ;~ I k ~ I

Here again we use the fact that the measure df3 is not concentrated at O. I

LEMMA 18. Let al<a2<· .. <a" and b 1 <b2< .. ·<b", and let
fE!!2j{. Put Ajk =f((a;-bk)2). If A is symmetric, then A has (n-l)
negative eigenvalues and 1 positive eigenvalue.

Proof By Lemma 3 in [S I]' f(x) can be expressed as

(t ~ 0),

(t ~ 0).

where f1(s) is a posItIve Borel measure on [0, 00) satisfying
J~ (df1(s)/s) < 00 and J~+ df1(s) >0. The latter is equivalent to the fact that
the mass of f1(s) is not concentrated at O. Let rJ. denote the mass of f3(s) at
0, i.e.,rJ.=lim'io [f3(s)-f3(O)]. Then

f(t)=f(O)+rJ.t+lim IX s-l(l-e- st )df1(s)
F. i 0 c
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Let C E IR", c # 0, and L7~ 1 Cj = 0. We have then

CfAC=j*1 k~1 cick[f(0)+x(ai -hk)2

+~i~rs 1[I-eXp[-S(al-hd2JJd{J(S)}

Since L7~ I ci = 0, it follows that

it kt CICk [f(O)+~i~ f..' 01' 1d{J(S)] =0.

By Lemma 15, L7~1 L~~I cick(al-hk)2~0. Consequently,

Here we use the facts that the function 01' f-+ 01' I Ejk(s) is positive for all 01' > °
and that the measure d{J(s) is not concentrated at 0, (see the similar argu
ment in Lemma 17). By the Courant~FischerTheorem, the matrix A has at
least (n - 1) negative eigenvalues. But the trace of A is nonnegative, hence
A has exactly (n - 1) negative eigenvalues and 1 positive eigenvalue. I

A direct consequence of Lemmas 17 and 18 is

COROLLARY 19. Let X he a linear space, and ¢J E X*. Let f E C[O, co)

and F=fO(p2. Let X1'''''X" and YI,""Y" he points in X such that
¢J(.r l ) < ... <¢J(x,,) and ¢JLvtl< .. · <¢J(y,.). Assume that the matrix A,
Aik=F(:rj-Yd is symmetric. We have the following results:

(1) If fErrij{, then A is positive definite.

(2) If fE;]Ijf, then A has (n-l) negative eigenvalues and 1 positive
eigenvalue.

We give an example of a function F, a node set {x I' ... , x,,} and a knot
set {Y'I, ..., y,,} distinct from the node set, such that the matrix (F(x j - x k ))

is symmetric. In IR, let XI = j, Yj = (n - j) + ~, j = 1, ... , n, and let F(t) = Itl.
lt is obvious to see that the matrix (F(.'rj-xk)) is symmetric.
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